Name

www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/03

Paper 3

October/November 2003

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

For Examiner's

The soluble salts of most metals can be prepared by adding the insoluble carbonate metal to the appropriate acid until excess carbonate is present.

(a) Name the acid which would be added to copper(II) carbonate to produce copper(II) nitrate.

[1]

(b) Write a balanced equation for the reaction.

[2]

(c) Describe the changes that you would observe during this reaction.

[2]

(d) Describe how you would obtain a solid sample of the copper(II) nitrate.

[2]

(e) Suggest why it is not possible to use a similar method to prepare the salt sodium nitrate.

.....[1]

www.PapaCambridge.com A student designs the apparatus of Fig. 2.1 as a device to detect thermal radiation. 2 is tightly covered with a material that absorbs thermal radiation well.

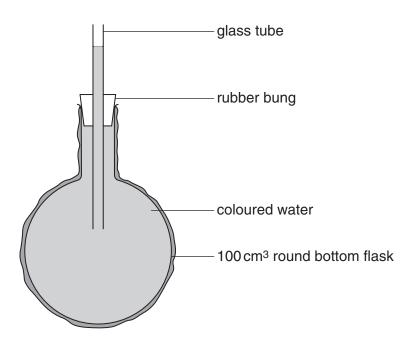


Fig. 2.1

(1)	flask and explain why it would be effective for absorbing thermal radiation.
	[3]
(ii)	Describe and explain what the student would see when intense thermal radiation is shone onto the apparatus.

(b)	(i)	Explain why the apparatus is not likely to detect low intensity thermal radial. **Total Parameters** **Tot
		[2]
	(ii)	State and explain two changes that could be made in order to improve the effectiveness of this apparatus.
		[4]

For Examiner's

3 The diagrams in Fig. 3.1 show the crystal structures of two forms of the element care

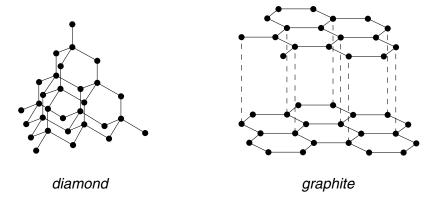


Fig. 3.1

In diamond crystals every carbon atom is linked to four other carbon atoms by covalent bonds.

In graphite each carbon atom is linked to three other carbon atoms by covalent bonds to form layers. The fourth outer shell electrons in the carbon atoms then form delocalised layers of electrons.

(a) Explain how these differences in the crystal structures produce differences in the

[2]

www.PapaCambridge.com (b) During combustion, carbon and many of its compounds combine with oxygen two different oxides, carbon monoxide and carbon dioxide.

Draw a diagram to show the formation of the bonds in carbon dioxide. You need only show the outer shell electrons in each atom.

State the condition needed for combustion to form carbon monoxide rather than carbon dioxide.[1] (iii) Explain how carbon monoxide affects the respiration of mammals.[1] 7 BLANK PAGE

[Question 4 can be found on page 8]

www.PapaCambridge.com

A cathode-ray oscilloscope (c.r.o.) is used to investigate the circuit of Fig. 4.1.

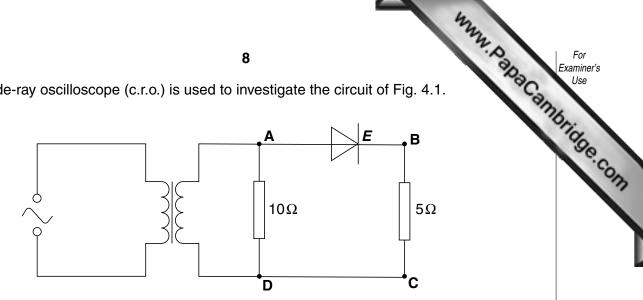
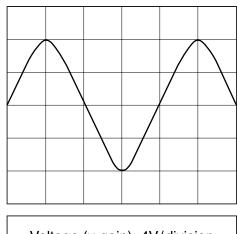



Fig. 4.1

Fig. 4.2 shows the trace on the oscilloscope screen together with the time-base and y-gain (voltage) settings when the oscilloscope is connected across AD.

Voltage (y-gain): 4V/division time-base: 20ms/division

Fig. 4.2

(a) (i) Calculate the peak voltage (amplitude) across AD.

peak voltage = V [2]

Calculate the peak current in the 10Ω resistor.

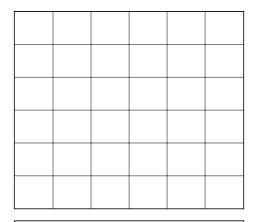
current = [2]

www.PapaCambridge.com The primary (input) coil of the transformer has 30 turns and the secondary (iii) turns.

Calculate the peak input voltage supplied to the transformer.

Write down the equation that you use and show all your working.

voltage supplied =V [3]


(iv) Calculate the time taken for one complete cycle of the a.c. supply.

time for one cycle =[3]

(b) (i) Name the component labelled **E** in Fig. 4.1.

.....[1]

(ii) On Fig. 4.3, draw the trace that would be seen if the c.r.o. were connected across BC.

Voltage (y-gain): 4V/division time-base: 20ms/division

Fig. 4.3

Fig. 5.1 shows an experiment to compare the rates of movement of two gases. 5

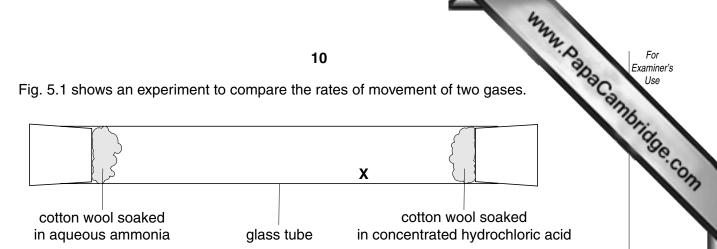


Fig. 5.1

After a few minutes, solid ammonium chloride appears at **X** inside the tube.

The equation for the reaction that occurs can be written as below.

$$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$

	3(3) 4 - (3)
(a)	Name the process by which the two gases move along the tube[1]
(b)	Suggest and explain why the solid is formed nearer to the end where the hydrogen chloride enters the tube.
	[2]
(c)	Explain this reaction in terms of proton transfer.
	[2]
(d)	Describe the chemical test that you could perform to show that the solid contained ammonium ions and state the result you would expect.
	test
	result
	[2]

,	(a)	Define renactive index.	20
			ro.

(b) Fig. 6.1 shows a fish below the surface of water in a lake.

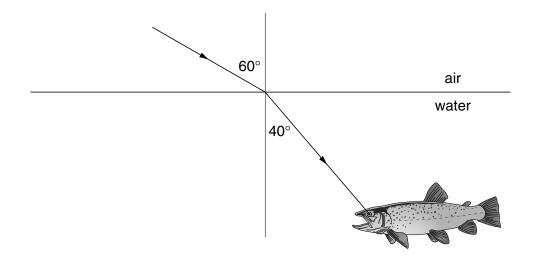


Fig. 6.1

(i)	Explain why refraction means that the fish can see through a wider range of angles than if there were no water present.
	[2]

(ii) Calculate the refractive index of the water in the lake.

Write down the equation that you use and show all your working.

refractive index =[3]

ĺ	For
Į	Examiner's
ı	1100

	44.
	12 A. D.
	minium is a metallic element in Group III of the Periodic Table. Aluminium obhoteric. Write the formula for aluminium oxide
(a)	Write the formula for aluminium oxide[1]
(b)	Explain the meaning of the term amphoteric.
	[2]
(c)	State one use of aluminium and describe two properties that make it suitable for that use.
	use
	first property
	second property
	[3]
(d)	Thallium is below aluminium in Group III of the Periodic Table.
	Suggest, with a reason, the class of oxide that you would expect thallium to form.
	ומו

8 The apparatus of Fig. 8.1 is used to take readings from which to calculate the acceler free fall.

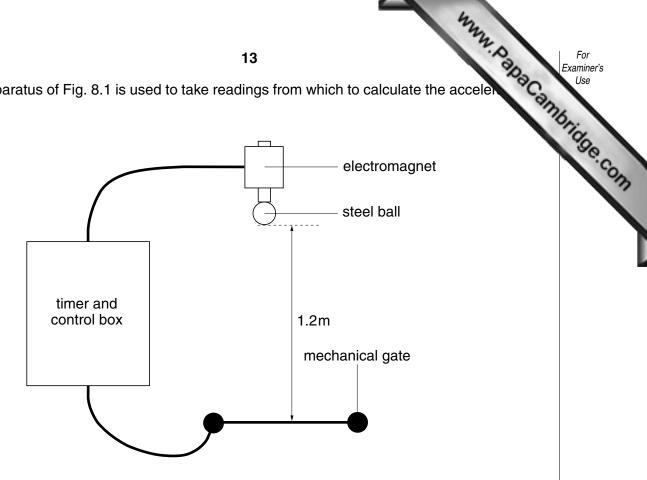


Fig. 8.1

As the control box is switched on the timer starts. At the same instant the steel ball is released from rest. When the ball hits the gate this opens and stops the timer. The mass of the ball is 20.0 g.

(a)	Explain what causes the steel ball to be released.
	[2]

(b) Calculate the weight of the ball in newton.

$$[g = 10 \text{ N/kg}]$$

weight =	N	۱ [2]
----------	---	-------

For Examiner's Use

(c)	Explain whether air resistance is likely to affect the motion of the ball as it falls.	
	[2]	
(d)	The time measured for the ball to fall a distance of 1.2 m is 0.48 s. Calculate a value for the acceleration of free fall (g) , using these values. Show your working.	

g = [4]

$$\mathrm{C_6H_{12}O_6} \rightarrow \mathrm{2C_2H_5OH} + \mathrm{2CO_2}$$

		the state of the s	
		15	For
		thod of preparing ethanol is the fermentation of glucose. The equation can be summarised as shown below. $C_6H_{12}O_6\to 2C_2H_5OH+2CO_2$ te the three essential conditions for fermentation to take place.	Use
		$\mathrm{C_6H_{12}O_6} \rightarrow \mathrm{2C_2H_5OH} + \mathrm{2CO_2}$	Tide
(a)	Sta	te the three essential conditions for fermentation to take place.	
			[3]
(b)	(i)	Calculate the relative molecular mass, $M_{\rm r}$, of glucose and of ethanol.	.[0]
		[Ar:H, 1; C, 12; O, 16.]	
			[2]
		$M_{\rm r}$, of glucose	
	(ii)	Hence find the mass of ethanol that could be obtained from 36 g of glucose.	
	(,		
		mass of ethanol =	[2]
	(iii)	Calculate the volume of carbon dioxide at room temperature and pressure, r.t produced by fermentation of 36 g of glucose.	.p.,
		1 mole of any gas occupies 24 dm ³ at r.t.p.	
		volume of carbon dioxide -	[2]

	Elements
DATA SHEET	The Periodic Table of the

							Group	Group									
_	=										=	≥	>	5	=	0	
						1 Hydrogen										4 He Helium	
7 Lithium	9 Beryllium										111 Boron	12 C Carbon 6	14 N Nitrogen 7	16 Oxygen	Fluorine	20 Ne 0n 10	
23 Na Sodium	Mg Magnesium	-									27 A1 Aluminium 13	28 Si licon	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 Chlorine	40 Ar Argon	
e x	9 C	45 48	51	52	55 Mn	56	₅₉	26 26	64 G	65	٥ ح	ي ع	75 A.S.	6½ V	® &	84 X	
otassium	Calcium 20	T 22	Vanadium 23	Chromium 24	Manganese 25	Iron (Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36	1
85	88		83	96		101	103	106	108	112	115	119	122	128	127	131	6
Rb 3ubidium	Strontium	Yarium		Molybdenum	Tc Technetium	Ru Ruthenium	Rh hodium	Pd Palladium	Ag Silver	Cadmium	Indium	S [₌]	Sb Antimony	Te Tellurium	lodine	Xenon	
000	38	139 40	14	42	43	4	192	105	47	301	49	50	51	52	53	54	
S S	Ba			* >	Be B	s O	I,	<u> </u>	Au	5	11	P		Po	At	Ru	
Saesium	Barium 56	m * 72	73	Tungsten 74	Rhenium 75	Osmium 76	Ε	Platinum 78	Plo9 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86	
ù	226 Ra	227 Ac															
rancium	Radium 88	Actinium 89 †															
3-71 L _i 0-103	3-71 Lanthanoid serie 0-103 Actinoid series	3-71 Lanthanoid series 0-103 Actinoid series	140 Ce Cerium	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
	В	a = relative atomic mass	232		238												4
>	^ ×	X = atomic symbol	卢	Ра		N	Pu	Am	Cm	B	Ç	Es	Fm	Md	N _o	LI	2
۵		b = proton (atomic) number	r Thorium	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawre 102	000
			The	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	one mole	of any ga	s is 24 dm	า ³ at room	n tempera	ture and	pressure	(r.t.p.).			Cambridge.C	Canby.	
															St.		

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).